
Journal of Geometry and Physics 57 (2007) 745–764
www.elsevier.com/locate/jgp

The discrete SU (3) transform and its continuous extension for
triangular lattices

A. Atoyan∗, J. Patera
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Abstract

We develop a new method for the discrete Fourier-type transform of multi-dimensional grid functions, which is based on
orbit functions of compact Lie groups of different symmetries. Here we present an implementation of this transform, abbreviated
here as DOFT (for Discrete Orbit Function Transform), for a 2-dimensional discrete function { fk,m} produced by sampling of a
continuous function f (z) with z ∈ R2 on the points zk,m of an equilateral triangular grid FN with N equal subintervals along each
of its edges. The DOFT for such a triangular grid corresponds to implementation of the case of Lie group SU (3). We present the
mathematical details for realization of this case, and show that the method provides an exact solution to the problem of the discrete
Fourier-type transform for such symmetry grids. In this paper we also continue development of the approach of generalization
of a discrete inverse transform to the form of a continuous trigonometric polynomial. We describe and exemplify the properties
of such a continuous extension of the DOFT (abbreviated as CEDOFT) for the SU (3) group, which proves an effective tool for
interpolation of the discrete function onto all points of the triangular region F. Like in the case of the CEDOFT on SU (2) studied
in detail earlier, the CEDOFT on SU (3) has very good properties of convergence with the increase of N . It also shows localization
and differentiation properties, which can be useful for a number of practical applications.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Numerical computation of various transforms is being widely implemented in practical science and industry, and it
also attracts significant theoretical research (e.g. see [7,28,27]). Our contribution here can be viewed from 4 different
perspectives:

(I) Here we present mathematical details for a specific type of discrete transform that we used earlier in [4] to
suggest a new method for signal processing in ground-based gamma-ray astronomy.

(II) It is a 2-dimensional implementation of the discrete Fourier (or Fourier-type) transforms on compact
semisimple Lie groups, the transform bases of which are given by orbit functions of the group [15,16,10,11]. Note
that the “orbit functions” considered in those references, as well as in this paper, are the C-functions of [21].
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For simplicity, we abbreviate these transforms as DOFT standing for “discrete orbit function transforms”. The
1-dimensional analog, that corresponds to the group SU (2), is reduced to the transform known otherwise as the
discrete cosine transform (DCT) [1,26], which has been studied in detail in our recent work [3]. The case here
corresponds to a different underlying group, which is the compact simple Lie group SU (3).

(III) It is a discrete transform on an equilateral triangular grid, which is the basis for the hexagonal grid. It is
efficient, versatile, and easily implementable in practice, once the technical tools worked out here are available. It
compares favorably with the earlier set-up of hexagonal transforms (see for example [14] and references therein).

(IV) It is a particular case of a vastly more general approach [16,21,11] to discrete transforms on Lie groups in
any dimension 1 ≤ n < ∞. Here n coincides with the rank of the underlying Lie group (e.g. see [9,12,13] for the
group E8). For 2 groups of the same rank the implementations are different from the viewpoint of symmetries of
discrete n-dimensional grids involved. The case of SU(3) is one of the 4 possibilities for the rank n = 2. The case
of SU (2) × SU (2) corresponds to grids with rectangular symmetry. It has been considered in the context of multi-
dimensional generalizations of the DCT in [3,23]. Possible applications of this DOFT in the areas of data processing
and imaging have been discussed in [5,6]. The remaining cases are the groups O(5) and G(2), the group theoretical
bases of which transforms are considered separately in [23,24] in conjunction with the groups SU (2) × SU (2) and
SU (3), respectively. They also realize cases of triangular grids, but of different symmetries than the equilateral triangle
in the case of SU(3). The SU(3) transform is distinguished from all those DOFTs also in the sense that it is the only
case where the transform basis is given by sets of complex-valued orbit functions. The 2-dimensional analogs of these
cosine transforms in the sine bases are developed in [25].

There is another new idea pursued here, as compared with the common discrete transform practice. It is the
continuous extension (hereafter, CE) of the discrete transform. As an idea it seems quite natural to put a continuous
trigonometric polynomial function into correspondence with the discrete transform. For many years, however, the
properties of such an extension in the case of the discrete Fourier transform (hereafter DFT) have not been clearly
discussed in the literature. A tacit ‘common wisdom’ in that regard was that one has to ‘take care’ of the high-
frequency harmonics of the DFT, and that DFT is “a Fourier representation of a finite sequence... rather than a
continuous function” (see [19], p. 87). We have shown in [3], in the context of DCT, which is the DOFT of the
SU (2) group, that it is quite different in the case of continuous extensions of the DOFT, hereafter abbreviated as
CEDOFT.1 This conclusion is further supported by the results presented here for the case of the SU (3) group.

In Section 2 the mathematical tools are recalled because the case of SU (3) is technically rather different from
the simplest case considered in [3]. In this section, the general problem is first set up in the fundamental region (an
equilateral triangle in this case) of the maximal torus of SU (3). Then the new expansion functions, called orbit
functions, on which our method is based, are explicitly described here, and their symmetries are shown.

In Section 3 we describe the SU (3)-transform on an equilateral triangular grid. Our main goal is summarized in
Eqs. (59) and (41). Crucial is the operation of the sesquilinear product of functions (42) on the triangular grid. For
its versatility, it is indispensable that the grid is group-theoretically defined through the set of its elements of any
given finite order N . Indeed, without that it would be rather problematic to guess the values, or even the presence,
of coefficients denoted as Pk,m and required for the discrete orthogonality property (54) of orbit functions [15,16]. In
addition, we also show here that even the halves of the orbit functions of SU (3) (2 triplets connected to each other
through a single reflection operator) are also discretely orthogonal on the grids. Points of the triangular grid turn out
to be in one-to-one correspondence with elements of a finite Abelian group on the maximal torus of SU (3). The fact
that there is an unlimited number of such groups in the torus provides the option of choosing uniform grids of any
density.

Properties of the CEDOFT function φN (z) are described in Section 4. The first one is the convergence of the
interpolation provided by φN (z) between grid points, while retaining the exactness of the discrete transform at the
points of the grid FN (with N subdivisions along each side of the equilateral triangle). A continuous model function
f (z) is chosen and sampled on the grid FN , producing the digital data fk,m ≡ f (zk,m) for our transform. Continuous
extension φN (z) of the transform is then compared with f (z). The denser the grid, the more closely φN (z) resembles
f (z); at the grid points they coincide by construction. We also show that even the approximation of discrete functions

1 Note that in [3,5,6,2] we have used the acronyms DGT (standing for “discrete group transform”) and CEDGT, instead of DOFT and CEDOFT
used here; we believe the new acronyms more clearly specify these transforms.
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by a modified CEDOFT series produced by truncation of high-order harmonics converges well and can be useful for
removing the noise from the discrete data.

The second important feature of CEDOFT is the localization property. It ensures small (diminishing) local influence
of relatively distant perturbations with increasing density of the grid points. We will formulate the localization
principle for the CEDOFT and exemplify its impact by numerical computation. The convergence of φN (z) is fast,
such that also in the case of SU (3) the CEDOFT provides a smooth interpolation to the original function f (z), which
is ‘differentiable’ in the sense that limN→∞(dφN /dz) = d f/dz. A detailed proof of these properties in the case of
SU (2) and its multi-dimensional implementations is given in [3].

2. Mathematical preliminaries

2.1. Functions on the fundamental region of SU (3)

The compact simple Lie group SU (3) can be faithfully presented as the group of all unitary matrices of size 3 × 3
with determinant equal to 1. Two elements h, h′

∈ SU (3) are conjugate if there is an element h0 ∈ SU (3) such that
h′

= h0hh−1
0 . All elements which are mutually conjugate form one conjugacy class of SU (3). There are infinitely

many conjugacy classes in the group. If an element g is of finite order, i.e. hK
= 1 for some integer K , then all of its

conjugacy class consists of elements of the same order.
The subjects of interest to us are functions f of conjugacy classes of SU (3), also called class functions, i.e. such

that

f (h) = f (h0hh−1
0 ), for all h, h0 ∈ SU (3).

Any unitary matrix can be diagonalized by a unitary transformation. Therefore every element of SU (3) is conjugate
to at least one diagonal matrix in the defining 3-dimensional representation.

The diagonal matrices of SU (3) form a maximal torus T of SU (3). Furthermore, all maximal tori are SU (3)-
conjugate, hence we can put:

T =

h(x, y, z) =

e2π ix 0 0
0 e2π iy 0
0 0 e2π iz

∣∣∣∣∣∣ x + y + z = 0

 . (1)

Note that h(x, y, z) and h(x + a, y + b, z + c) represent the same element in T if a, b, c ∈ Z, simply because for
integers the exponents e2π ia etc. are equal to 1. The condition x + y + z = 0 in (1) gives the equation of a plane
called the defining plane. Within that plane one fixes a region F whose points are in one-to-one correspondence with
the conjugacy classes of elements of SU (3). Then it is convenient to consider the class functions f to be the functions
defined on F.

Although F can be chosen and parametrized in many ways, it is advantageous to follow the practice in Lie theory.
The advantages are twofold: (i) the SU (3) case becomes a special case of any semisimple compact Lie group, and
(ii) one gets technically the simplest description possible. The price to pay for that is the need to work with two
non-orthogonal bases simultaneously, the so called α- and ω-bases.

Let R2 be the real Euclidean plane containing F. The standard parametrization of the defining plane makes F an
equilateral triangle with vertices (0, 0), (1, 0), and (0, 1) relative to the ω-basis. The vectors

ω1 = (1, 0), ω2 = (0, 1), where ]{ω1, ω2} = 60◦,

are called the fundamental weights of SU (3) (see Fig. 1). Elements z = aω1 + bω2 of the fundamental region F can
now be described explicitly:

F = {aω1 + bω2 | 0 ≤ a, b ∈ R; a + b ≤ 1}. (2)

Subsequently we also need the SU (3)-weight lattice P ⊂ R2 and its positive chamber P+
⊂ P , which are formed by

the integer linear combinations

P = {aω1 + bω2 | a, b ∈ Z}, (3)

P+
= {aω1 + bω2 | a, b ∈ Z≥0

}. (4)
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Fig. 1. a (left panel): Representation of the maximal torus T (hexagon) of the SU (3) group in the plane (x + y + z) = 0, simple roots α1 and α2
of the group, the fundamental weights ω1 and ω2, and the fundamental domain F of SU (3). Note that the sides of T plotted by dashed lines do not
belong to T. b (right panel): Representation of elements of finite adjoint order N = 11 in the fundamental domain (the big dots).

It is convenient to set for now the square length of vectors of the ω-basis to be

〈ωk |ωk〉 =
2
3
, k = 1, 2.

Then the α-basis, called the basis of simple roots of SU (3) shown in Fig. 1, is defined by the condition

〈αk |ω j 〉 = δk, j , k = 1, 2. (5)

It follows that the matrix of scalar products of simple roots, i.e. the Cartan matrix of Lie theory, for the SU (3) group
is

C =
(
〈αk |α j 〉

)
=

(
2 −1

−1 2

)
.

Hence, between the two bases, ω = (ω1, ω2) and α = (α1, α2), we have the matrix relations α = Cω and ω = C−1α,
which it is useful to write explicitly as

α1 = 2ω1 − ω2, α2 = 2ω2 − ω1, (6)

ω1 =
1
3
(2α1 + α2), ω2 =

1
3
(2α2 + α1). (7)

It is also useful to introduce the root lattice Q of SU (3):

Q = {aα1 + bα2 | a, b ∈ Z}.

Three copies of Q form P . More precisely, P = Q ∪ (Q + ω1) ∪ (Q + ω2).

2.2. Equidistant grid of points in the fundamental region

Our next task now is to introduce uniform grids of discrete points of any density in F, and explain their relation to
Lie group theory. Note that the fundamental region F, being an equilateral triangle, can be used to tile the entire plane
by its copies. Therefore any such grid can be extended to a triangular lattice on the entire R2.

Let FN ⊂ F denote such a grid (see Fig. 1b), where N ∈ Z>0 is the number of intervals along each of the 3 sides
of F . The density of points in FN is measured by (inversely proportional to) the total number MN ≡ |FN | of points in
the grid, which is

MN =

N+1∑
j=1

j =
1
2
(N + 1)(N + 2). (8)

The points zk,m ∈ FN are conveniently described in the omega basis through

zk,m =
k

N
ω1 +

m

N
ω2, k, m ∈ Z≥0, k + m ≤ N . (9)
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The relation of these points to SU (3) elements h(x, y, z) of the torus (1) is understood if one transforms zk,m
to α-bases using (6), and takes into account the barycentric coordinates (x, y, z) of the simple roots, which are
α1 = (1, −1, 0) and α2 = (0, 1, −1). This results in the element

hk,m =

e2π i 2k+m
3N 0 0

0 e2π i m−k
3N 0

0 0 e−2π i 2m+k
3N

 . (10)

An important observation for the theory of discrete transforms on Lie groups is that these elements are of finite
order (EFO; see [15,16] for details) since h3N

k,m = 1.
When zk,m is one of the vertices of F , i.e. (k, m) = (0, 0), (N , 0) or (0, N ), all three eigenvalues of (10) are the

same. When it is on one of the three boundary segments, i.e. either k = 0, or m = 0, or k + m = N , there are two
distinct values of exponentials in (10). When zk,m is in the interior of F, there are three distinct exponentials. The
number of permutations of the diagonal entries in (10) gives the multiplicity Pk,m of the elements in T corresponding
to the element hk,m ∈ FN . Clearly, for those 3 different cases it is equal to 1, 3, and 6, respectively. Thus one can
count the total number Ntot of elements in TN ⊂ T (that results from all elements FN ) by adding up the number of
vertices, the number of points on each segment of the boundary, and the points interior to F:

Ntot = 1 × 3 + 3 × 3(N − 1) + 6 × (N − 2)(N − 1)/2 = 3N 2.

2.3. Weyl group orbits of SU (3)

In general, the reflection rξ of a point z in a mirror containing the origin and orthogonal to ξ is given by

rξ z = z −
2〈z|ξ〉

〈ξ |ξ〉
ξ, z, ξ ∈ R2. (11)

In particular, rξ ξ = −ξ and rξrξ z = z. Choosing in place of ξ the simple roots α1 and α2, one gets the reflections rα1

and rα2 , which we write as r1 and r2 to simplify the notation. Particularly important and often used are the reflections
of fundamental weights

r1ω1 = ω1 − α1 = ω2 − ω1 ≡ ω3,

r2ω2 = ω2 − α2 = ω1 − ω2 = −ω3,

r1ω2 = ω2 and r2ω1 = ω1.

(12)

Note that here we introduced an element ω3 which will be useful later on in Section 3. The Weyl group W of SU (3)

is generated by the reflections r1 and r2. It is a finite (dihedral) group of order 6. The symbol Wλ denotes the set of all
distinct points that are generated from λ ∈ R2 by W , i.e. it is the Weyl group orbit of λ.

There is a unique element in Wλ with non-negative coordinates in the ω-basis. Therefore, if not mentioned
otherwise, in the following we use the subscript λ implying the element λ = aω1 + bω2 := (a, b) with a, b ∈ R≥0.
Each point µ ∈ R2 belongs to precisely one Weyl group orbit Wλ. Assuming a, b ∈ Z, we come to the orbits Wλ with
λ ∈ P+ (3). All points µ of these orbits cover the entire weight lattice P .

There are four types of Weyl group orbits, the elements of which in the ω-basis are the following:

W(0,0) = {(0, 0)} (13)

W(a,0) = {(a, 0), (−a, a), (0, −a)} (14)

W(0,b) = {(0, b), (b, −b), (−b, 0)} (15)

W(a,b) = {(a, b), (b, −a − b), (−a − b, a), (−a, a + b), (a + b, −b), (−b, −a)}. (16)

Note that the general form (16) formally describes all particular cases of Wλ. It only becomes degenerate for those
particular cases, resulting in 2 copies of W(0,b) or W(a,0) if either a = 0 or b = 0, respectively, and 6 copies of the
element (0, 0) if a = b = 0.
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It is also worth noticing that in the W -orbit (16) the 4th element is the reflection r1λ of the 1st element. All other
elements in (16) are found from these two by applying the pairs of reflections r12 := (r1r2) or r21 := (r2r1) = r2

12
to the 1st and the 4th elements in (16), respectively. These represent the orbits Vλ and Vr1λ of the even subgroup of
the Weyl group for the elements λ and r1λ, respectively, which result in rotations at ±120◦ around the point of origin.
Writing λ in the α-basis as λ = Aα1 + Bα2, where

A =
2
3
(2a + b), B =

2
3
(2b + a), (17)

the W orbit (16) can be presented as Wλ = Vλ ∪ Vr1λ, where

Vλ = {Aα1 + Bα2, (B − A)α1 − Aα2, −Bα1 − (B − A)α2}, (18)

Vr1λ = {(B − A)α1 + Bα2, Aα1 − (B − A)α2, −Bα1 − Aα2}. (19)

The elements of the second subset can also be seen as reflections r2 of the elements of Vλ, i.e. Vr1λ = Vr2λ. The vector
sum of elements in each of (18) and (19) is equal to 0.

The root system ∆ containing the simple roots of SU (3) is the W -orbit W(1,1). In ω- and α-bases we have
respectively

∆ := W(1,1) = {±(1, 1), ±(2, −1), ±(−1, 2)} = {±(α1 + α2), ±α1, ±α2}.

In addition to the finite Weyl group of SU (3) generated by the reflections (11), we introduce a larger, affine group
W aff

⊃ W generated by all affine reflections RKγ :

RKγ z := rγ z + Kγ, z ∈ R2, γ ∈ ∆, K ∈ Z. (20)

Here rγ is the reflection (11) in the hyperplane orthogonal to the root γ ∈ ∆ and passing through the origin. In RKγ

it is combined with an additional shift by Kγ , an element of the root lattice Q. More generally we have translations

rγ RKγ z = rγ (rγ z + Kγ ) = r2
γ z + Krγ γ = z − Kγ

RKγ rγ z = RKγ (rγ z) = r2
γ z + Kγ = z + Kγ.

(21)

Our interest in the affine Weyl group of SU (3) stems from the properties of orbit functions whose arguments are
related by transformations from W aff. Note that r1 and r2 formally correspond to reflections in the mirrors containing
fundamental weights ω2 and ω1, respectively. Choosing γ = α1 + α2 and K = 1, we find that the reflection of any
z ∈ F in the third side of the fundamental triangle F is the affine reflection Rα1+α2(z).

2.4. Orbit function of SU (3)

We are now in a position to define [15,16] an SU (3)-orbit function Ωλ ≡ Ωa,b:

Ωλ(z) :=

∑
µ∈Wλ

e2π i〈µ|z〉, z ∈ R2. (22)

Note that orbit functions are continuous complex-valued functions, and have continuous derivatives of any order in
the entire R2.

In what follows, the functions Ωλ(z) are exploited extensively. Therefore it is useful to write them down in detail.
The explicit expression of Ωλ(z) formally depends on the basis one uses for weights µ ∈ Wλ and for variable z in
computing the scalar product 〈µ | z〉 in (22). Let λ = aω1 + bω2 and z = θ1ω1 + θ2ω2, where θ1, θ2 ∈ R. Then for
the 4 particular types of Weyl group orbits one has the following:

Ω0,0(z) = 1 (23)

Ωa,0(z) = e
2π i
3 a(2θ1+θ2) + e

2π i
3 a(−θ1+θ2) + e

2π i
3 a(−θ1−2θ2) (24)

Ω0,b(z) = e
2π i
3 b(θ1+2θ2) + e

2π i
3 b(θ1−θ2) + e

2π i
3 b(−2θ1−θ2) (25)
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Ωa,b(z) = e
2π i
3 [(2a+b)θ1+(a+2b)θ2] + e

2π i
3 [(−a+b)θ1−(2a+b)θ2] + e

2π i
3 [(2a+b)θ1+(a−b)θ2]

+ e
2π i
3 [(−a+b)θ1+(a+2b)θ2] + e

2π i
3 [(2a+b)θ1+(a−b)θ2] + e

2π i
3 [−(a+2b)θ1−(2a+b)θ2]. (26)

Had we used z in the α-basis, z = φ1α1 + φ2α2, we would have in the last (the general) case

Ωa,b(z) = e2π i[aφ1+bφ2] + e2π i[−aφ1+(a+b)φ2] + e2π i[(a+b)φ1−bφ2]

+ e2π i[bφ1−(a+b)φ2] + e2π i[(−a−b)φ1+(a)φ2] + e2π i[−bφ1−aφ2]. (27)

Orbit functions are constituents of characters and have other remarkable properties [20,22]. In special cases
they coincide with the characters. More precisely, Ω1,0(z) and Ω0,1(z) are the characters of the two 3-dimensional
irreducible representations of SU (3); 2 + Ω1,1(z) is the character of the adjoint representation; Ω2,0(z) + Ω0,1(z) is
the character of one of the 6-dimensional irreducible representations of SU (3), etc. Many more examples are found
(in terms of Weyl group orbits) in [8].

Although the method of DOFT is only based on Ωa,b(z) with integer a and b, it is worth considering the properties
of Ωα,b assuming formally a, b ∈ R. For the purposes of practical calculations it is also convenient to use further on
the general expression (26) for all 4 combinations of a and b. Denoting that function as Ψa,b, we have Ψa,b = Ωa,b(z)
for a 6= 0 and b 6= 0, Ψa,0 = 2Ωa,0(z), Ψ0,b = 2Ω0,b(z), and Ψ0,0 = 6Ω0,0(z). This renormalized orbit function
Ψa,b(z) ≡ Ψλ(z) formally represents a continuous function not only of the variable z ∈ R2 but also of the second real
2-dimensional variable λ := aω1 +bω2 over the entire space R2, including the lines corresponding to a = 0 or b = 0.
This is not the case for Ωλ. This property will be used in the Section 3 below.

For further calculations it is useful to write the explicit expression for Ψλ using λ in the α-basis, i.e. λ = Aα1+Bα2
where A and B are given by (17). This results in

Ψa,b(z) = e2π i(Aθ1+Bθ2) + e2π i((B−A)θ1−Aθ2) + e2π i(−Bθ1−(B−A)θ2)

+ e2π i((B−A)θ1+Bθ2) + e2π i(Aθ1−(B−A)θ2) + e2π i(−Bθ1−Aθ2). (28)

2.5. Symmetry properties

Allowing λ to be in R2, and not just λ ∈ P of (3), immediately results in the following scaling property of orbit
functions:

Ψλ(Cz) = ΨCλ(z) for all C ∈ R. (29)

This is an obvious consequence of the property 〈µ | cz〉 = 〈cµ | z〉 for the scalar product in (22) and of the scalability
of the W -orbit W(cλ) = cWλ.

Symmetry properties of the SU (3) orbit function that involve its complex conjugation and are valid for any a, b ∈ R
are

Ψa,b(z) = Ψb,a(z), (30)

Ψa,b(z) = Ψ−a,−b(z). (31)

Thus, Ψa,a(z) and the sums [Ψa,b(z) + Ψb,a(z)] and [Ψλ(z) + Ψ−λ(z)] all are real-valued functions.
The symmetry properties with respect to the Weyl group which are valid for any a, b ∈ R are the following two:

Ψλ(z) = Ψwλ(z) = Ψλ(wz), (32)

Ψλ(z) = Ψz(λ) for all z, λ ∈ R2. (33)

Here w is any sequence of reflection operators r1 and r2 which generate the Weyl group W , i.e. wλ = µ ∈ Wλ.
The property (32) is built into definition (22). The property (33) follows from the observation that the set of 6 scalar
products {〈µ | z〉 | µ ∈ Wλ} coincides with the set {〈λ | ζ 〉 | ζ ∈ Wz}, when both W orbits Wλ and Wz are treated in
the general form (16).

Fig. 2 shows some examples of SU (3) orbit functions with integer values of a and b. In this case, i.e. when λ ∈ P ,
the orbit functions also are invariant with respect to any root lattice shifts of the argument z → z + ξ , where ξ ∈ Q.
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Fig. 2. Orbit functions Ψa,b(z) for some values of a and b. The dashed contours correspond to negative values of Ψa,b(z). Note the symmetry of
the functions with respect to reflections in each of the 3 sides (solid lines) of the fundamental triangle F.

This is apparent from (27) taking into account that such shifts of z correspond to integer shifts of φ1 and φ2. Therefore
in that case we have the symmetry with respect to the affine Weyl group as well:

Ψλ(z) = Ψλ(Rnγ z), for λ ∈ P, n ∈ Z, and γ ∈ Q. (34)

2.6. Orbit functions on FN

Let us now restrict the continuous variable z ∈ R2 to discrete values zk,m ∈ FN given by (9). The orbit function
then depends on the vectors zk,m =

1
N (kω1 + mω2) =

1
N (k, m) and λ = aω1 + bω2 = (a, b). Denote the point

za,b =
1
N (a, b). It follows from the scaling (29) and the inversion (33) properties that

Ψa,b(zk,m) = Ψk,m(za,b). (35)

Note that if a, b ∈ Z≥0 and a + b ≤ N , the point za,b belongs to the grid FN .

Example 1. Consider an example N = 2. By (8) there are 6 elements in F2 which correspond to the following:

3 vertices of F : z0,0 = 0, z2,0 = ω1, z0,2 = ω2

midpoints of 3 sides of F : z1,0 =
1
2
ω1, z0,1 =

1
2
ω2, z1,1 =

1
2
ω1 +

1
2
ω2.

In Table 1 we show several orbit functions evaluated at the points of F2. There are no points in the interior of F in this
case.

By full circles in Fig. 3 we show the points zk,m ∈ FN in the case of N = 16. The full triangles correspond to
the points r1zk,m produced by reflections r1 of points zk,m in the interior of FN . These are reflections in the mirror
containing the origin and orthogonal to α1, i.e. along ω2. The open triangles in Fig. 3 result from the affine reflections
RKγ zk,m of the inner points of FN given by (20) where K = 1 and γ = α1 + α2 ∈ ∆.
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Table 1

Values of several SU (3)-orbit functions at the six points of F2 and the multiplicities P[N ]

k,m (43) for N = 2

z =
1
2 (k, m) (0 0) 1

2 (1, 0) 1
2 (0, 1) 1

2 (2, 0) 1
2 (1, 1) 1

2 (0, 2)

Ψ0,0(z) 6 6 6 6 6 6
Ψ1,0(z) 6 2κ5 2κ 6κ4

−2 6κ2

Ψ0,1(z) 6 2κ 2κ5 6κ2
−2 6κ4

Ψ2,0(z) 6 6κ4 6κ2 6κ2 6 6κ4

Ψ1,1(z) 6 −2 −2 6 −2 6
Ψ0,2(z) 6 6κ2 6κ4 6κ4 6 6κ2

Ψ3,0(z) 6 −2 −2 6 −2 6
Ψ2,1(z) 6 2κ5 2κ 6κ4

−2 6κ2

Ψ1,2(z) 6 2κ 2κ5 6κ2
−2 6κ4

Ψ0,3(z) 6 −2 −2 6 −2 6
Ψ2,2(z) 6 6 6 6 6 6

P[2]

k,m 1 3 3 1 3 1

Notation: κ = e2π i/6.

Fig. 3. Elements of finite order for N = 16 in the fundamental region (full dots) and in the adjacent triangular regions produced by Weyl group
reflections r1z (this formally corresponds to reflection in the line of ω2) shown by full triangles, and the affine reflections Rγ (z) (in the line of the
third side of F) shown by open triangles. The set composed of FN (full dots) and full triangles makes HN , and the union of FN and open triangles
makes the set GN (see the text).

The values of the orbit function on each of this points can be found from (28) by substituting θ1 = k/N and
θ2 = m/N in the basis (ω1, ω2). For practical calculations, like in Section 3 below, sometimes it is useful to express
the argument z in the basis (ω1, ω3), where ω3 = ω2 − ω1 is shown in Fig. 3. For the argument in the latter bases we
will use the notation v j,n in order to distinguish it from zk,m := (kω1 + mω2)/N in the basis (ω1, ω2). For the same
actual point on the grid zk,m = v j,n , therefore k = ( j − n) and m = n. Using this, the orbit function (28) can be
rewritten as

Ψa,b(zk,m) ≡ Ψa,b(v j,n) = Λa,b(zk,m) + Λb,a(zk,m), (36)

where Λa,b(z) ≡ Λλ(z) is the orbit function of the even subgroup of the Weyl group for the element λ = aω1 + bω2.
In terms of α-basis for λ it can be written as

Λa,b(zk,m) :=

∑
µ∈Vλ

e2π i〈µ|zk,m 〉
= e

2π i
N (Aj+(B−A)n)

+ e
2π i
N ((B−A) j−Bn)

+ e
2π i
N (−B j+An). (37)

Here A and B given by (17) are the coordinates of λ in the α-basis, j = k + m and n = m. The function Λa,b given
by (37) is based on the subset Vλ of half of the elements of Wλ, whereas Λb,a is based on the remaining triplet of
elements given by (19).

Representation of the grid points in the basis (ω1, ω3) allows us to describe the set of points shown in Fig. 3 by full
circles (‘dots’) and full triangles as{

v j,n =
j

N
ω1 +

n

N
ω3 | 1 ≤ j ≤ N , 0 ≤ n ≤ N − 1

}
, (38)
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plus the points v0,0 = 0 and vN ,N = ω2. We will refer to it as the set HN . In this basis the points of the grid FN
correspond to n ≤ j .

Finally, let us write explicit expressions for the orbit function Ψa,b(z) for all z ∈ R2 in terms of Cartesian
coordinates x, y. Choose the coordinate system with the y-axis passing symmetrically with respect to fundamental
weights ω1 and ω2 (i.e. which is bisecting F in Fig. 1), the x-axis passing through the origin, and with the length
scale unit equal to the length of the fundamental weights, i.e. |ω1| = |ω2| = 1. The unit vectors ex and ey in the
directions of the axes x and y, respectively, can be expressed as the vector sums ex = ω1 −ω2 and ey =

1
√

3
(ω1 +ω2),

respectively. Then the real and imaginary parts of the orbit functions of SU (3) can be reduced to:

ReΨa,b(x, y) = 2 cos
(

2πy
a + b
√

3

)
cos

(
2πx

a − b

3

)
+ 2 cos

(
2πy

a
√

3

)
cos

(
2πx

2b + a

3

)
+2 cos

(
2πy

b
√

3

)
cos

(
2πx

2a + b

3

)
. (39)

ImΨa,b(x, y) = 2 cos
(

2πy
a + b
√

3

)
sin

(
2πx

a − b

3

)
+ 2 cos

(
2πy

a
√

3

)
sin

(
2πx

2b + a

3

)
− 2 cos

(
2πy

b
√

3

)
sin

(
2πx

2a + b

3

)
. (40)

3. SU(3) group transform on a triangular grid

In this section we specialize the general results of [16] to the case of SU (3) using also [17].
Consider a function fk,m := f (zk,m) given by its values on the points zk,m ∈ FN ⊂ F of the equilateral triangular

grid (9). As defined in [17], a discrete transform of a class function on a semisimple compact Lie group, here SU (3),
corresponds to decomposition of this function into a finite series of orbit functions of the group evaluated at the same
points FN :

f (zk,m) =

j+n≤N∑
j,n≥0

C jnΨ jn(zkm) for 0 ≤ k, m, k + m ≤ N . (41)

This is a system of |FN | linear equations with respect to unknown coefficients C jn , each involving (evaluated at) a
distinct point zk,m . The number of terms in the series coincides with |FN | of (8). Thus, the Fourier transform of (41)
consists in finding the coefficients C jn . That is accomplished in (59) below.

The crucial property that allows realization of such inversion is the discrete pairwise orthogonality (54) of orbit
functions Ψλ with different λ. A general proof of this property for orbit of compact Lie groups is found in [17].
This tells us that two orbit functions are orthogonal on the set of points FN if they are separated on FN . Here we
will derive the necessary and sufficient condition for the separability in the case of SU (3). This will make clear the
procedure for construction of maximal sets (53) of pairwise orthogonal orbit functions. A by-product of this method
is the orthogonality property of the triplets Λa,b(z) (37) that represent orbit functions for the even subgroup of the
Weyl group.

3.1. Orthogonality of orbit functions on FN

A sesquilinear product of two discrete class functions f (zk,m) and g(zk,m), with zk,m ∈ FN , has been defined
in [15,16] as follows:

〈 f, g〉N :=

∑
zk,m∈TN

f (zk,m)g(zk,m) =

∑
zk,m∈FN

Pk,m f (zk,m)g(zk,m), (42)

where Pk,m is the multiplicity factor

Pk,m =

1 for k = m = 0, or k = N , m = 0, or k = 0, m = N
3 for 0 < k < N , m = 0, or 0 < m < N , k = 0 or k, m 6= 0, k + m = N
6 otherwise.
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It corresponds to the number of points in TN that would belong to the Weyl group orbit of the given point zk,m ∈ FN .
Equivalently,

Pk,m =
6

(1 + δk+m,0)(1 + δk,0 + δm,0)
(43)

where the indices in the Kronecker symbols are read modulo N , i.e. δN ,0 = δ0,0 = 1. The transition in (42) from the
sum over the points of TN to the points only of FN is possible because the class functions are symmetric with respect
to Weyl group reflections. Note that this is not the case for triplet functions Λλ. The symmetry of these functions only
allows transition (‘folding’) from the set TN to the set HN defined above in (38) (and shown in Fig. 3).

The proof of the orthogonality property of orbit functions is based on the decomposition of the product of orbit
functions into the sum of orbit functions as described in [17]. This property acquires a very simple form in terms of
renormalized orbit functions Ψλ instead of Ωλ.
The product of a pair of renormalized orbit functions Ψλ1 and Ψλ2 is reduced to the sum of 6 orbit functions as
follows:

Ψλ1(z)Ψλ2(z) =

∑
µ2∈Wλ2

Ψλ1+µ2(z), (44)

i.e. where µ2 ∈ Wλ2 runs over 6 elements of the Weyl orbit of λ2 in its generalized (degenerate) form of (16).
The proof of this property is straightforward. Take into account that the product of two Ψ -functions represents a

sum of 36 exponentials e2π i〈µ1+µ2|z〉, where µ1 ∈ Wλ1 and µ2 ≡ µp ∈ Wλ2 . The corresponding 36 sums (µ1+µ2) can
be grouped as follows. Construct the first 6 sums ∆p fixing µ1 on some λ1 ∈ Wλ1 , i.e. ∆p = λ1 + µp, p = 1, . . . , 6.
All remaining sums are produced by 5 consecutive actions of the Weyl group reflections r1 and r2 on both λ1 and µp.
This results in 6 generalized Weyl group orbits in the form of (16), and hence 6 renormalized orbit functions Ψλ1+µ2 .

�

Obviously, one can also permute the vectors λ1 and λ2 in (44) to choose λ2 + µ1 with µ1 ∈ Wλ1 . This can only
lead to the very same 6 orbit functions, although the indices formally could be different. In practice it might prove
useful to choose the longest from the two vectors as λ1, i.e. |λ1| ≥ |λ2|.

Note that while both λ1 ∈ R2 and λ2 ∈ R2 could be chosen from the positive quadrant in the (ω1, ω2)-basis, the
sums ∆p = λ1 + µ2, p = 1, . . . , 6, could generally have positive and negative indices in that bases. Using (32), in
these cases one might want to rewrite the functions Ψ∆p as Ψλp , such that λp would have both of those indices non-
negative. In particular cases some of those 6 functions Ψ∆p in (44) might occasionally coincide if relevant elements
∆p were to belong to the same Weyl group orbit Wλp .

Let us write these 6 elements ∆p explicitly for λ1 = (c, d) and λ2 = (a, b). Using (16), we find

{∆p} := {(c + a, b + d), (c + b, d − a − b), (c − a − b, d + a),

(c − a, d + a + b), (c + a + b, d − b), (c − b, d − a)}. (45)

Example 2. On the basis of (45)

Ψ1,1Ψ1,1 = Ψ2,2 + Ψ3,0 + Ψ0,3 + Ψ2,−1 + Ψ−1,2 + Ψ0,0.

Since both Ψ2,−1 and Ψ−1,2 are equal to Ψ1,1, we have

Ψ1,1Ψ1,1 = Ψ2,2 + Ψ3,0 + Ψ0,3 + 2Ψ1,1 + Ψ0,0.

In terms of the original orbit functions Ωλ this can be rewritten as

Ω1,1Ω1,1 = Ω2,2 + 2Ω3,0 + 2Ω0,3 + 2Ω1,1 + 6Ω0,0.

It has been shown in [17] that two orbit functions Ωλ1 and Ωλ2 are orthogonal to each other on FN if they are
separable on FN . The latter means that Ωλ1(zk,m) 6= Ωλ2(zk,m) at least at one point zk,m ∈ FN . The necessary and
sufficient condition for separability of orbit functions, however, has not been specified. Here we provide a complete
proof for the discrete orthogonality of orbit functions in the case of SU (3). It therefore also helps to specify the
condition of separability of orbit functions.
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Proposition 1. The sesquilinear product of 2 orbit functions

〈Ψλ1 | Ψλ2〉N = 0 (46)

where λ1, λ2 ∈ P, iff the affine Weyl orbits of elements λ1/N and λ2/N are different.

In other words this means that a pair of orbit functions corresponding to λ1 = a1ω1 + b1ω2 and λ2 = a2ω1 + b2ω2
with integer values of a1, a2, b1 and b2 are orthogonal to each other on the grid FN (or equivalently TN ), if and only if
none of 6 elements νp ∈ W(λ2/N ) in the Weyl orbit of 1

N λ2 can be connected with the element ν1 :=
1
N λ1 by a vector

∆p = ν1 − νp that would belong to the root lattice Q.
Note that Ψλ2 = Ψ−λ2 . Therefore it follows from (42) and (44) that

〈Ψλ1 | Ψλ2〉N =

6∑
p=1

 ∑
zk,m∈FN

Pk,mΨ∆p (zk,m)

 , (47)

where ∆p := λ1 − µp with µp ∈ Wλ2 .
Let ∆p = aω1 + bω2 in ω-basis, or ∆p = Aα1 + Bα2 in the α-basis with (A, B) given by (17). Because of

symmetry property (32), we have∑
zk,m∈FN

Pk,mΨ∆p (zk,m) =

∑
zk,m∈HN

Lk,mΨ∆p (zk,m) (48)

where the set HN includes zk,m ∈ FN and the r1-reflections of points zk,m interior to F (see Fig. 3). Then the new
multiplicity factor Lk,m = 3 for all points zk,m ∈ HN , except for the 3 vertices of F where Lk,m = 1. For each
of 6 exponentials in the function Ψ∆p , the sum over HN is then reduced to the product of 2 geometric series, if the
argument is transformed into the basis (ω1, ω3) as zk,m = v j,n := ( jω1 + nω3)/N , with k = ( j − n) and m = n and
one takes care of the 3 vertices 0, ω1 and ω2 in the sum. Thus, for the first exponential term in the triad (37) we have∑

zk,m∈HN

Lk,me
2π i
N (Aj+(B−A)n)

= 3
N∑

j=1

e
2π i
N Aj

N−1∑
n=0

e
2π i
N (B−A)n

+ 1 + e2π iB
− 2e2π iA

= 3
e

2π i
N A(e2π iA

− 1)(e2π i(B−A)
− 1)

(e
2π i
N A

− 1)(e
2π i
N (B−A)

− 1)
+ 1 + e2π iB

− 2e2π iA.

The triplet of exponents (37) results in the sum∑
zk,m∈HN

Lk,mΛ∆p (zk,m) = 2[cos 2π iA + cos 2π iB + cos 2π i(B − A)]

+
6
σ

[
e

2π i
N A(e−

2π i
N B

− 1) cos 2π iB − e
2π i
N B(e−

2π i
N A

− 1)

× cos 2π iA + (e−
2π i
N A

− e−
2π i
N B) cos 2π i(B − A)

]
, (49)

where

σ = e
2π i
N A

− e−
2π i
N A

+ e−
2π i
N B

− e
2π i
N B

+ e
2π i
N (B−A)

− e−
2π i
N (B−A). (50)

For a, b ∈ Z the sums A+B = a+b, 2A−B = a and 2B− A = b all are integers. Thus e2π iA
= e−2π iB

= e2π i(B−A),
therefore (49) is reduced to

6 cos(2π iA)

(
1 +

1
σ

[e
2π i
N (A−B)

− e
2π i
N A

+ e
2π i
N B

− e
2π i
N (B−A)

+ e−
2π i
N A

− e−
2π i
N B

]

)
= 0.

The derivation of (49) has in fact assumed that neither of ratios A/N , B/N or (A − B)/N is integer, so that σ 6= 0.
Let us assume that one and only one of these values is integer, say (A − B) = 0 modulo N . Because also A + B is
integer, it follows then that both A and B are integers. Therefore e2π iA

= e2π iB
= 1, and hence each of the summands

of exponential functions, like (49), is reduced to zero.
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Thus, the sum of the triplets (37) on the set of points z ∈ HN is not equal to zero if and only if both A/N and B/N
are integer numbers. In that case we simply have∑

zk,m∈HN

Lk,mΛ∆p (zk,m) =

∑
zk,m∈TN

Λ∆p (zk,m) = 3Ntot = 9N 2. (51)

Because Ψa,b = Λa,b + Λb,a , this means that
∑

Pk,mΨ∆p (zk,m) over zk,m ∈ FN is equal to zero iff ∆p/N does not
belong to the root lattice Q, and otherwise it is positive. Then this proves the Proposition. �

3.2. Orthogonality of Λa,bz on HN and GN

The proof of the Proposition 1 given above has actually proved a bit more than that. Namely, it has proved the
orthogonality of the even subgroup orbit functions, the triads Λa,b defined through (37), on the set TN , or equivalently
on the set HN with the multiplicity factor Lk,m . Note that a decomposition property similar to (47) also holds for the
functions Λa,b(z). It can be formulated as follows:
The product of two triplet functions Λλ1 and Λλ2 is reduced to the sum of 3 orbit functions as follows:

Λλ1(z)Λλ2(z) =

3∑
p=1

Λ∆p (z), (52)

where ∆p = λ1 + µp, and the vector µp ∈ Vλ2 given by (37).
The discrete orthogonality of functions Λλ corresponds to the following proposition:

Proposition 2. The sesquilinear product of two triplet functions Λλ1 and Λλ2 for elements λ1, λ2 ∈ P is equal to 0 if
and only if none of the 3 vectors ∆p = ν1 − νp, where ν1 :=

1
N λ1 and νp ∈ V(λ2/N ), belongs to the root lattice Q.

Note that sesquilinear product of the functions Λλ is reduced to the sum over the set HN ,∑
zk,m∈TN

Λλ(zk,m)Λβ(zk,m) =

∑
zk,m∈HN

Lk,mΛλ(zk,m)Λβ(zk,m).

Instead of HN one can also use the set, call it GN , which contains FN and the points of the affine reflections of the
inner elements of FN shown by open triangles in Fig. 3. This is because the points shown in Fig. 3 by full triangles
and open triangles are connected by an affine reflection that involves r12 and the root lattice shifts on γ = (α1 + α2),
both of which keep Λλ invariant (for the standard case λ ∈ P).

But the sum over HN or GN cannot be further reduced to the points of the triangular grid FN , because Λλ is not
generally symmetrical with respect to single reflections r1 or r2. In what follows we will limit our consideration to the
case of orbit functions Ψλ.

3.3. Maximal sets of pairwise orthogonal orbit functions

The inversion of (41), which is our main goal here, is possible due to the following lemma which defines the
maximal sets of MN = |FN | functions Ψλ(z) pairwise orthogonal on the triangular grid, z ∈ FN .

Lemma. The set of orbit functions

{Ψλ(z) | λ = kω1 + mω2, k, m ≥ 0; k + m ≤ N } (53)

represents a maximal set of orbit functions which are pairwise orthogonal with respect to the product (42) for a given
N. All other maximal sets {Ψλ j } are found by replacements of any of the Ψλ from the set (53) by Ψµ+Nξ , where
µ ∈ Wλ and ξ is any element in the root lattice Q, which may be different for different λ.

The proof of the Lemma follows directly from Proposition 2. The set of points {zk,m =
1
N λ} corresponding to (53)

is exactly the set of EFO in FN . Since neither of the 2 different elements in TN could be connected by root lattice shifts
∆p = ξ ∈ Q, the pairwise orthogonality of the orbit functions in Eq. (53) is satisfied. On the other hand, addition of
any new orbit function Ψk1,m1 to the set implies (k1 + m1) > N . This results in the EFO z1 ≡ zk1,m1 of the adjoint
order N outside of the fundamental domain, which therefore is conjugate to some element z0 ∈ FN (see [15]). Hence,
z1 ∈ W a f f

z0 , and according to Proposition 2, 〈Ψz1 | Ψz2〉 6= 0. �
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3.4. Discrete SU (3) group transform

In this paper we use only the orthogonal sets of orbit functions given by (53) with ξ = 0. In that case (42) is written
as follows:

〈Ψkm | Ψ jn〉N = δk, jδm,n〈Ψkm | Ψkm〉N = δk, jδm,n
108N 2

Pk,m
. (54)

The proof of Proposition 2 given above suggests that for any λ = kω1 + mω2 and β = jω1 + nω2 (which in the
general case may not necessarily be in the lattice P+, but in P) the sesquilinear norm D = 〈Ψλ | Ψβ〉N can be found
as follows. Calculate the number J of occurrences of elements ∆ =

1
N (λ − µ) and 6 vectors µ ∈ Wβ given by (16),

such that ∆ ∈ Q. Each of such cases contributes 6Ntot = 18N 2 to D (twice the value in (51)), resulting in the total
D = J × 18N 2.

In the case of (53) the calculations are straightforward:

〈Ψk,m | Ψk,m〉N = 18N 2
×


6 for k = m = 0 mod (N )

2 for k = 0, 0 < m < N
2 for 0 < k < N , m = 0
2 for 0 < k, m, k + m = N
1 for 0 < k, m, k + m < N .

All these cases are conveniently combined as J = (1 + δk+m,0)(1 + δk,0 + δm,0) = 6/Pk,m resulting in (54).

Example 3. Let us take up the example in Table 1. According to (53), a maximal set of orthogonal orbit functions on
F2 has 6 functions. Among the functions shown in Table 1, one finds for example the following orthogonal sets:

{Ψ0,0,Ψ1,0,Ψ0,1,Ψ2,0,Ψ0,2,Ψ1,1}; (55)

{Ψ2,2,Ψ1,0,Ψ0,1,Ψ2,0,Ψ0,2,Ψ1,1}; (56)

{Ψ0,0,Ψ2,1,Ψ0,1,Ψ2,0,Ψ0,2,Ψ0,3}; (57)

{Ψ2,2,Ψ2,1,Ψ1,2,Ψ2,0,Ψ0,2,Ψ3,0}. (58)

The order of functions in each of these sets is chosen such that it is easy to see which functions from the basic (the first)
set can be replaced by which ones from Table 1. Therefore the functions in the same columns above are not orthogonal
to each other since they do not satisfy Proposition 2. Thus, the difference between vectors (3, 0) and (−1, 2) ∈ W(1,1)

is exactly 2α1; or the elements (−1, 0) ∈ W(0,1) and (1, 2) can be connected with each other by ∆ = 2(α1 + α2).

Example 4. Using the entries of Table 1, let us calculate the products

〈Ψ2,0 | Ψ0,0〉2 = 〈Ψ0,0 | Ψ0,2〉2 = 6(3 + 3 · 3κ4
+ 3 · 3κ2

+ 3κ2
+ 3 · 3 + 3κ4) = 0;

〈Ψ1,1 | Ψ1,2〉2 = 6 · 6 − 3 · 2 · 2κ5
− 3 · 2 · 2κ + 6 · 6κ4

+ 3 · 2 · 2 + 6 · 6κ4
= 0;

〈Ψ3,0 | Ψ1,1〉2 = 6 · 6 + 3 · (−2) · (−2) + 3 · (−2) · (−2) + 6 · 6
+ 3 · (−2) · (−2) + 6 · 6 = 144 (=18 · 22

· 2).

A DOFT of a given { fk,m} := { f (zk,m)} corresponds to solving the system of MN (8) linear equations (41) with
respect to MN variables C j,n . Multiply (41) by Pk,mΨps(zk,m), and take the sum over {k, m}. Applying (54) we find

C j,n =
1

〈Ψ j,n | Ψ j,n〉N

k+m≤N∑
k,m≥0

Pk,m fk,mΨ j,n(zk,m) (59)

for all 0 ≤ j, n ≤ N .

Equality (59) solves the problem of the DOFT. The set of coefficients {Ck,m | 0 ≤ k, m, k +m ≤ N } represents the
discrete Fourier transform of the grid function fkm on the orbit functions of the SU (3) group. It is an exact discrete
transform. This means that for any set { fk,m} resulting from sampling of f (z) at the points zk,m ∈ FN the direct
transform {Ck,m} into the bases of orbit functions {Ψk,m} is uniquely defined by (59). And vice versa, the knowledge
of the set {Ck,m} allows an unambiguous reconstruction of { fk,m} as the inverse transform (41).
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4. Continuous extension of the DOFT

4.1. Generalization of a discrete transform as a continuous function

Let us now consider what happens with a discrete inverse transform (41) if we treat it as a continuous function in the
same basis. This means that we allow the argument zk,m of functions in the transform basis, in our case Ψ j,n(zk,m),
to be continuous z ∈ F, using the same expansion coefficients C j,n as were calculated for the discrete transform.
Obviously, for transforms based on continuous functions the resulting function φ(z) will be continuous as well.
Call it the continuous extension (CE) of the (inverse) discrete transform. In [3] we have applied this procedure for
continuous extension of the DOFT (abbreviated as CEDOFT2) in the case of the SU (2) group, and have made a
detailed comparison between the properties of CEDOFT and CEDFT for the conventional discrete Fourier transform
(DFT; see e.g. [19,18]).

In the case of the SU (3) group considered here, the CEDOFT from zk,m ∈ FN to all points z ∈ F is given by the
function

φN (z) =

j+n≤N∑
j,n≥0

C j,nΨ j,n(z), (60)

where the coefficients C j,n are defined by (59). Obviously, the CEDOFT is exact on the grid, meaning that
φ(zk,m) = fk,m at all points zk,m ∈ FN .

In practice one calculates first the DOFT matrix {C j,n} to be used further on for calculations of φN (z). But it is
useful here to write the expression for φN (z) expressed through the values of { fk,m} explicitly. Substituting (59) for
C j,n in Eq. (60), we find

φN (z) =
1

108N 2

∑
k,m

Pk,m fk,m SN (zx,y, zk,m). (61)

Here z ≡ zx,y =
1
N (xω1 + yω2), so that 0 ≤ x, y, (x + y) ≤ N corresponds to z ∈ F, and

SN (zx,y, zk,m) =

j+n≤N∑
j,n≥0

Pj,nΨx,y(z j,n)Ψ k,m(z j,n). (62)

Here we have used the symmetry property (35) for the transformation

Ψ j,n(zx,y)Ψ j,n(zk,m) = Ψx,y(z j,n)Ψk,m(z j,n).

Note that (62) represents a formal generalization of the sesquilinear product (42) for the case of real x, y ∈ R.
Therefore at any grid point zk,m , when x, y ∈ Z≥0, the orthogonality relation (54) can be applied. This immediately
confirms the exactness of CEDOFT on the grid, φN (zk,m) = fk,m ≡ f (z j,n).

The function φN (z) seems natural to use for interpolation of the given discrete function between the grid points.
Take into account that in practical terms the discrete function { fk,m} results from the sampling of some continuous
function f (z), with z ∈ F, on the grid points zk,m ∈ FN . One can then compare φN (z) of (60) with this model function
on the basis of the interpolation error εN (z) := |φN (z) − f (z)|. The quality of the interpolation method is defined by
the speed of convergence of εN (z) to zero with the increase of N .

4.2. Properties of CEDOFT

A detailed study of CEDOFT on SU (2) group (for 1D functions) made in [3] has shown that its properties are
superior to continuous extension of common transforms, in particular of the DFT. Continuous extension of the DFT,
which is itself an exact discrete transform on the grid, happens not to converge at all with increase of N . The

2 Note that earlier in [3,4] we used the acronym DGT, standing for “discrete group transform”, and correspondingly CEDGT, instead of DOFT
and CEDOFT.
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Fig. 4. a (2 panels on the left): The contour plot (upper panel) and the 3-dimensional (3-D) image of a model function f (z) composed of a
superposition of 2-dimensional Gaussian ellipsoids with the effective widths (dispersions) σ⊥ = 0.03. The contour lines correspond to separations
∆ f = 0.1, and the dashed lines show the negatives contour lines, φ(z) < 0; b (2 panels in the middle): A CEDOFT interpolation of the discrete
image produced by sampling of the model function on the grid with N = 20; c (2 panels on the right): CEDOFT approximation of f (z) for a grid
with N = 22 (see text).

closer the grid points, the faster ε(z) of CEDFT oscillates, but it does not converge to zero. Various ameliorations
of the interpolation behavior have been tried, like “real DFT” (suppressing artificially high-order harmonics), with a
problematic success. Oscillations diminish, but the exactness of the transform is destroyed.

Quite different is the behavior of CEDOFT. Its analytic properties proved very similar to the properties of the
canonical continuous Fourier transform of smooth functions (see e.g. [30,29]). εN (z) rapidly decreases with increasing
density of the grid points. In fact, even the partial derivatives of CEDOFT of multi-dimensional CEDOFT come very
close to f ′(z) starting with reasonably dense grids FN [3]. The CEDOFT also satisfies the localization principle. This
property ensures that at large N the interpolation quality is defined mainly by the local values of fk,m .

Similar are the analytic properties of CEDOFT of SU (3). Discussion and examples of these properties are given
in the rest of this section.

4.2.1. Convergence of CEDOFT
In Fig. 4 we show an example of an approximation of a continuous model function f (z) with z ∈ FN (shown in the

left panels) by the CEDOFT function φN (z) of the discrete function fk,m ≡ f (zk,m) sampled on a grid with N = 20.
The function f (z) is composed of the sum of two 2-dimensional Gaussians, with longer axes perpendicular to each

other, and with the transverse (to the direction of elongation) dispersions as small as σ⊥ = 0.03. The 2 panels in the
centre show the 3D representation and the contour plot of the φ10(z) corresponding to the grid with N = 10. This
function is very far from the original function f (z). This is expected since in that case the grid is very coarse, to catch
the width of the Gaussians, d = t frac1N ≈ 3.3σ⊥. Surprisingly, however, for a grid with the separation between
points d of about 1.5σ⊥ the amplitude of ε(z) is already rapidly decreasing. In Fig. 4 the upper and lower panels on
the right side show φ22(z) for N = 22. This corresponds to d ≈ 0.45 = 1.5σ⊥. The difference between the CEDOFT
interpolation and f (z) is only noticeable at the lowest contour levels. In the case of Gaussian-type functions there
would be no apparent difference between f (z) and its approximation by φ(z).

Like for the case of the canonical continuous Fourier transform, model functions with larger gradients require
denser grids to suppress the high-frequency artifacts (ripples) in the interpolation by the inverse transform. The
convergence φN (z) → f (z) with increasing N remains fast in any case.

4.2.2. Convergence of the truncated CEDOFT
Fig. 5 demonstrates the convergence of CEDOFT for a discrete function { fk,m} resulting from the sampling of

a model ‘table’ function in the form f (z) ∝ e(x1σ1)
4
+(x2/σ2)

4
(in terms of Cartesian variables (x1, x2) in the plane

z ∈ R2). Besides that, { fk,m} contains a ‘hot pixel’ from the sampling of a very narrow 2-D Gaussian function centred
at some distant point of the grid, and with the same height as the main function. For the chosen model parameters
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Fig. 5. a (2 panels on the left): The contour plot (upper panel) and the 3-dimensional view of a model function composed of 2-dimensional
continuous Gaussian ellipsoid, onto which 2 narrow spikes which produce 2 ‘hot pixels’ (after sampling of the analog signal on the grid) are
superimposed. The heights of the spikes are equal to half of the height of the ellipsoid; b (2 panels in the middle): A direct (i.e. without filtering)
CEDGT interpolation of the discrete image produced by sampling of the analog image on the grid with N = 20; c (2 panels on the right): CEDGT
view of the image after application of the filter with C f = 0.5 (see the text).

(σ1, σ2) the grid with N = 20 intervals is sufficiently dense, so that in most parts the model function is approximated
by φN (z) sufficiently well. But on the corner closest to the ‘hot pixel’ the ripples propagating from that ‘hot point’ are
distorting the pattern significantly (two panels in the middle of Fig. 5).

In Fig. 5c (panels on the right) we show the image produced by the truncated CEDOFT function φ̃N ,M (z). It
represents the trigonometric polynomial series (60), where only the terms with C j,n corresponding to the harmonic
order K = ( j + n) ≤ M are preserved, and the others are discarded, i.e. C j,n → 0 for K > M . This figure
demonstrates that such a truncated CEDOFT series is also converging. The truncated function is no longer exact at
the grid points. However, the noise (ripples) from the ‘hot pixel’ apparent in the exact CEDOFT interpolation φN (z)
is essentially suppressed in the area of the main model function. This provides a much better overall approximation
to the original function f (z). Furthermore, the value of φ̃N ,M (z) in the ‘hot pixel’ itself is essentially suppressed (by
a factor of ∼4).

This effect is understood from the analysis of the frequency content of the discrete image fk,m shown in Fig. 6.
It shows the mean absolute values of the Fourier coefficients C j,n of harmonic order K . Like for the case of
2-dimensional DCT, in the case of the SU (3) transform the Fourier coefficients of a reasonable image are also
concentrated in the domain of lower frequencies. Meanwhile, the coefficients of the DOFT of the ‘hot pixel’ (i.e. a
δ-function), or of any random noise, also represent a random noise (i.e. the analog of a constant). Therefore the noise
typically dominates at high frequencies. Discarding high frequencies corresponds effectively to removing the noise
by such simple low-pass filtering.

The effectiveness of this approach for data processing has been demonstrated in [4] by application of the SU (3)

CEDOFT for the processing images collected by contemporary gamma-ray astronomy detectors which are based on
hexagonal symmetry grids.

4.2.3. Localization property
A very important property of the CEDOFT on SU (3), similar to the case for the SU (2) × SU (2) group

DOFT, consists in the validity of the so called localization principle (see e.g. [30,29]). This important property
implies that variations in the discrete function { fk,m} at the points of the grid sufficiently far from the given point
zx,y =

1
N (xω1 + yω2) do not noticeably change the values of φN (z) in the vicinity of zx,y . This can be formulated as

follows:
Localization principle: Let a grid function { fk,m | k, m ≥ 0, k + m ≤ N } result from a piecewise smooth function
f (z) limited to the region z ∈ F sampled on the grid FN . At any given point zx,y ∈ F, and for any small d > 0
and ε > 0 there exists a number Nd(ε) such that for all N > Nd(ε) the continuous extension of the discrete inverse
transform φN (z) depends within the accuracy ε only on the values of f (zk,m) in the d-neighborhood of zx,y , i.e.:
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Fig. 6. The averaged absolute values |Ck,m | of the DOFT coefficients of the given harmonic order K = k + m (shown by big dots) for the model
function of Fig. 5 sampled on the grid with N = 20. The stars show the mean values |C ′

k,m | of the DOFT of the ‘hot pixel’ alone (see the caption
in Fig. 5).

for any ε > 0 and d > 0 ∃ Nd(ε) such that ∀N > Nd(ε) H⇒

| φN (zx,y) −
1

108N 2

∑
zk,m

Pk,m;N fk,m SN (zx,y, zk,m) |< ε, (63)

where the sum is taken only over the values of {k, m} satisfying the condition |zk,m − zx,y | < d.
Recall that at any grid point zx,y ∈ FN the CEDOFT is exact. So it is independent of any other values of the

grid function except for fx,y . The localization property becomes important for the accuracy of interpolation of the
functions between the grid points. In fact, the localization principle tells us that the interpolation provided by CEDOFT
trigonometric polynomial φN (z) at some point z is asymptotically independent of the deviations of the values of { fk,m}

at a distant location, |zk,m − z| � 1/N . Thus, even high-amplitude random noise in some ‘hot pixels’ in the real data
should have little impact on the CEDOFT interpolation if those pixels are not close to the region of interest. The fast
decay of the amplitude of the ripples from the ‘hot pixel’ in Fig. 5b is the result of the localization property.

Note that the validity of the localization principle effectively means that the sesquilinear product of 2 generalized
orbit functions given by (62) with x, y ∈ R asymptotically tends to zero for any small but fixed distance d > 0
between the arguments in SN . In other words, in the limit N → ∞ one has

SN (zx,y, zk,m) → δ(zx,y − zk,m) for zx,y, zk,m ∈ F. (64)

It is clear from (63) if we choose a discrete delta function centred at some z0 ≡ (k0, m0) 6= zx,y (i.e. at a ‘hot pixel’)
for { fk,m}.

On the other hand, (64) also is a sufficient condition for the proof of (63). Indeed, the number of additions in
the sum in (61) corresponding to fk,m outside of a given d-neighborhood of zx,y is increasing ∝ N 2. This is exactly
compensated by the factor 1/N 2 in (63). Therefore the decline of SN (zx,y, zk,m) in the case of some non-zero distance
d > 0 between zx,y and zk,m would prove (63). Note that effectively the property (64) corresponds to the known
property of orthogonality of the bilinear product of continuous orbit functions in the integral over the region F.

An analytic proof of the localization property has been given for the CEDOFT of the SU (2) group [3]. In the case
of SU (3) the mathematical proof is more difficult, and we limit the discussion here to numerical examples of that
effect.

4.2.4. Differentiability property
Finally, it is also worth mentioning the convergence of partial derivatives of ∂φN /∂zl (in the zl direction) to the

respective derivatives ∂ f/∂zl . The accurate analytic proof of this property in the case of SU (2) is found in [3]. In the
case of SU (3) the proof is more problematic, and is also beyond the scope of this paper.

From the perspective of demonstration by numerical computation, the convergence of derivatives is apparent from
the excellent interpolation of the model function with φN (z) already on Fig. 4c for a grid with N = 22. In the case
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of Fig. 5, the derivatives of φN (z) in Fig. 5b and of f (z) shown in Fig. 5a are close to each other over most of the
triangular region F, except for the region close to the hot pixel. Here the derivatives of the ripples would dominate
the derivatives ∂φN /∂zl . However, because of the localization property, with further increase of the grid density the
region affected by noise from the hot pixel would shrink. Therefore in that limit the derivatives of the model function
would be recovered by differentiation of φN (z) over the entire region of the ‘table function’

5. Concluding remarks

As a concluding remark, we would like to note that practical computation of the DOFT on SU (3) is sufficiently
fast. In principle, it might become even comparable with the speed of DCT/DFT computation if or when the FFT-type
algorithms for fast calculations of this transform are developed. The very structure of the orbit functions, representing
a combination of complex exponential functions of given harmonic orders like in the case of standard DFT, assumes
such a possibility. In any case, this transform compares very favorably with other current techniques for Fourier-
type decompositions on hexagonal/triangular grids (see e.g. [14]). Also, realization of the DOFT for other types of
triangular symmetries has been considered recently in [24–26]. All of these factors allow practical implementation
of methods of Fourier analysis for discrete data formed on detector grids of different triangular and rectangular
symmetries, as suggested in [4] for the gamma-ray astronomy data. It is also important that the methods of the DOFT
can be also implemented for higher-dimensional grids as well using orbit functions for Lie groups of higher ranks.
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